Modeling CO[subscript 2] Chemical Effects on CO Formation in Oxy-Fuel Diffusion Flames Using Detailed, Quasi-Global, and Global Reaction Mechanisms
نویسندگان
چکیده
Interest in oxy-fuel combustion as one of the leading carbon capture technologies has grown significantly in the past two decades. Experimental studies have shown higher CO concentration in oxy-fuel diffusion flames than in traditional air-fuel flames of both gaseous and solid fuels. The higher CO concentration changes the flame profiles, and it may have impacts on pollutants formation. This paper presents a numerical study regarding the chemical effects of CO2 on CO formation in the flame region, and their modeling approaches in CFD simulations. Equilibrium calculation confirms higher CO concentration associated with fuel-rich stoichiometry in CO2 diluted combustion environment. One-dimensional counter flow diffusion flame simulation using detailed reaction mechanisms reveals
منابع مشابه
Ammonia Conversion and NOx Formation in Laminar Coflowing Nonpremixed Methane-Air Flames
This paper reports on a combined experimental and modeling investigation of NOx formation in nitrogen-diluted laminar methane diffusion flames seeded with ammonia. The methane-ammonia mixture is a surrogate for biomass fuels which contain significant fuel-bound nitrogen. The experiments use flue-gas sampling to measure the concentration of stable species in the exhaust gas, including NO, O2, CO...
متن کاملStudies on Soot Formation and Combustion in Turbulent Spray Flames: Modeling and Experimental Measurement
The present study is concerned with measuring and simulating soot formation and combustion in turbulent liquid fuel spray flames. Soot concentrations inside the combustor are measured by filter paper technique. The simulation is based on the solution of the fully-coupled conservation equations for turbulent flow, chemical species kinetic modeling, fuel droplet evaporation and combustion and...
متن کاملNumerical Simulation and Experimental Measurements of Soot and Organic Nanoparticles in Opposed-Flow Diffusion Flames of Methane, Ethylene and Propane
In recent years attention of researchers has been focused on the combustion generated particles in order to have a deeper knowledge on their formation and develop combustion systems with higher efficiency and lower environmental impact [1,2]. Opposed-flow configuration allows to study behavior and sooting tendency of fuels, avoiding fluidodynamic problems fundable in diffusion flames laminar or...
متن کاملH[subscript 2]-assisted CO[subscript 2] thermochemical reduction on La[subscript 0.9]Ca[subscript 0.1]FeO[subscript 3-] membranes: a kinetics study
Kinetics data for CO2 thermochemical reduction in an isothermal membrane reactor is required to identify the rate-limiting steps. Here, we report a detailed reaction kinetics study on this process supported by an La0.9Ca0.1FeO3-δ (LCF-91) membrane. The dependence of CO2 reduction rate on various operating conditions is examined such as CO2 concentration on the feed side, fuel concentrations on ...
متن کاملEffects of Partial Pressure of Oxygen on the Stability of Axial, Oxy- Coal, Turbulent Diffusion Flames
2 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclo...
متن کامل